18 октября, 2024

SolusNews.com

Последние новости

ИИ помогает создать самый прочный в мире железный сверхпроводник в KCL

ИИ помогает создать самый прочный в мире железный сверхпроводник в KCL

Эта разработка в три раза сильнее, чем сверхпроводящие магниты на основе железа, и может сделать аппараты МРТ меньше и дешевле, чем когда-либо прежде.

Ученые разработали самый мощный в мире сверхпроводящий магнит на основе железа с помощью искусственного интеллекта, что может стать крупным прорывом в области доступных аппаратов МРТ и будущего электрифицированного транспорта.

Сверхпроводящие магниты способны создавать очень сильные и стабильные магнитные поля, не требуя большого количества энергии. Это означает, что их можно использовать в ряде технологий, включая аппараты МРТ, которым требуется сильное магнитное поле для получения четких трехмерных изображений мягких тканей. Они также могут быть использованы в транспорте следующего поколения, в том числе… СК Маглев Система поездов в Японии.

Однако используемые в настоящее время сверхпроводники в основном представляют собой большие катушки из сверхпроводящих проволок из сплава ниобия и олова. Используемые вами устройства должны соответствовать этому размеру, что может ограничить их применение.

В статье, опубликованной в Материалы НПГ Азия Сегодня исследователи из Королевского колледжа Лондона и Японии изготовили недорогой и мощный сверхпроводящий магнит на основе железа с помощью машинного обучения (ML), открыв путь к широкому и доступному использованию этой технологии.

Доктор Марк Эйнсли из инженерного факультета Королевского университета сотрудничал в этой работе с исследователями из Токийского университета сельского хозяйства и технологий, Японского агентства науки и технологий, Национального института материаловедения и Университета Кюсю.

«Используя искусственный интеллект (ИИ), мы создали экономичную и масштабируемую альтернативу железу, с которой гораздо проще работать и которая открывает двери для меньших и легких устройств».

Д-р Марк Эйнсли — преподаватель инженерных наук

Доктор Марк Эйнсли сказал: «Сверхпроводящие магниты — это основа будущего. Они не только используются для визуализации рака с помощью аппаратов МРТ, но и будут иметь жизненно важное значение для исследований рака». Электрический самолет И ядерный синтез. Однако материалы и технологии, необходимые для создания традиционных сверхпроводников из медной проволоки, обычно дороги, что приводит к ограниченному проникновению на рынок. Использование их в больших количествах, поскольку магниты не теряют своего магнетизма после намагничивания, может привести к уменьшению занимаемой площади по сравнению с более тяжелыми катушками с проводом, но производство сверхпроводников на основе меди может занять недели.

READ  Обзор перезаряжаемой клавиатуры Kensington Pro Fit Ergo KB675 EQ TKL

«Используя искусственный интеллект (ИИ), мы создали экономически эффективную и масштабируемую альтернативу железу, с которой гораздо проще работать и которая открывает двери для создания меньших и легких устройств. Первые сверхпроводники на основе железа были изготовлены десять лет назад. но магнитные поля, которые они создавали, не были достаточно сильными и стабильными для широкого использования.

«Хотя сверхпроводящие магниты по-прежнему необходимо охлаждать до очень низких температур, чтобы работать эффективно, наш процесс закладывает основу для производителей, чтобы сделать их достаточно быстрыми и мощными для промышленного применения, что означает больше аппаратов МРТ по более низкой цене. потребность в большом количестве сверхпроводящих проводов в аппаратах МРТ, мы также можем создать Новое поколение небольших устройств «Их можно использовать в практике врачей общей практики, вместо того, чтобы нуждаться в больших палатах в больницах, что повышает доступность».

«Уменьшая потребность в большом количестве сверхпроводящих проводов в аппаратах МРТ, мы также можем создать новое поколение более мелких устройств, которые можно будет использовать в практике общей практики».

Д-р Марк Эйнсли — преподаватель инженерных наук

К аппаратам МРТ предъявляются строгие требования к силе и стабильности магнитного поля, создаваемого их магнитами, чтобы обеспечить безопасность пациентов и качество изображений. Прототип исследователей — первый сверхпроводник на основе железа, отвечающий этим требованиям.

Используя новую систему машинного обучения под названием БуксвиаУченые разработали структуру, которая может улучшить создание сверхпроводников в лаборатории быстрее, чем когда-либо прежде.

Основываясь на попытках исследователей улучшить сверхпроводящие свойства магнитов путем изменения таких параметров, как температура и время производственного процесса, BOXVIA определяет закономерности, которые оптимизируют производительность, и корректирует изменения параметров для достижения оптимальной конструкции. Обычно исследователям требуются месяцы, чтобы создать каждый магнит и протестировать его свойства, чтобы оптимизировать его для различных сценариев, но новое программное обеспечение значительно сокращает это время.

READ  Можете ли вы представить себе, что вы отвечаете за мозговые чипы Илона Маска? Он нанимает

Исследователи также обнаружили, что сверхпроводящие магниты, разработанные с использованием этой системы ML, имеют другую структуру на микроскопическом уровне, чем те, которые производятся без BOXVIA, ​​с более крупными кристаллами на основе железа внутри структуры магнита.

Структура образцов, созданных ИИ, отличалась от высокопроизводительных образцов, созданных людьми. Эти образцы содержат кристаллы железа в широком диапазоне размеров, что не соответствует однородной структуре, традиционно предпочитаемой исследователями-людьми.

Следующая задача команды — выяснить, как эта невиданная ранее наноструктура способствует ее сверхпроводящим свойствам, что в будущем приведет к созданию еще более мощных магнитов.

/Общий выпуск. Этот материал исходной организации/авторов может носить хронологический характер и отредактирован для ясности, стиля и объема. Mirage.News не занимает корпоративных позиций или партий, и все мнения, позиции и выводы, выраженные здесь, принадлежат исключительно автору(ам). Полный текст можно посмотреть здесь.